If it's not what You are looking for type in the equation solver your own equation and let us solve it.
31^2+x^2=481^2
We move all terms to the left:
31^2+x^2-(481^2)=0
We add all the numbers together, and all the variables
x^2-230400=0
a = 1; b = 0; c = -230400;
Δ = b2-4ac
Δ = 02-4·1·(-230400)
Δ = 921600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{921600}=960$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-960}{2*1}=\frac{-960}{2} =-480 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+960}{2*1}=\frac{960}{2} =480 $
| (42)+(75)=(6x+15) | | 3p-2=-5 | | 39=23x+45 | | 5x-7/3=11 | | h5–5=13 | | h/5–5=13 | | 5j+1=9+4j | | a-78=99 | | 2x^2-13=20=(2x-5)(x-4) | | 21=y–9y | | y+98=121 | | 19=6f+1 | | 21=y–9y= | | 12k=240 | | -5x+9=8x-14,4 | | q+6=14q= | | -5(x+10)^7/2=-390,625 | | 3(3+5w)=5(w+1)=12 | | 8c+14=94 | | 5x/2+20=180 | | -5(x+10)^7/2=-390,635 | | 3x+33=4x=8 | | 2e–1=11 | | 8r=152 | | d/3+1=25 | | z+9/9=5 | | b+159=300 | | 39=-9+6x | | r=152 | | 6+–2u=2 | | 3n^2-3n=3n^2+2n-1 | | 3w=40 |